UFS luchtvaart versterkt diabetes, dementie en hoge bloeddruk

Inleiding
Op deze site is al vaker betoogd dat toxische emissies uit de luchtvaart de volksgezondheid schaden. Er is hiernaar door verschillende mensen onderzoek gedaan. Ik heb op deze site bijvoorbeeld aandacht besteed aan werk van Yim en (o.a.) Barrett uit 2015 (zie https://www.bjmgerard.nl/sterfteschattingen-door-luchtverontreiniging-luchtvaart/ en https://iopscience.iop.org/article/10.1088/1748-9326/10/3/034001 ). Yim en Barrett e.a. baseren zich op fijnstof (Particulate Matter) met een diameter <2.5µm (PM2.5), en ozon, en kwamen mondiaal tot 16.000 voortijdige sterfgevallen (waarvan een kwart in de Landing and Take Off – fase, LTO), en kwamen tot $21 miljard schade per jaar.

De wetenschap gaat verder. De trend is dat het onderzoek zich op steeds kleinere deeltjes richt, en dat dat steeds moeilijker wordt. Van grof stof (silicose) naar PM10 naar PM2.5 en het front van de wetenschap zit nu bij het meten en beschrijven van ultrafijn stof (UFS op zijn Nederlands en UFP in het Engels). Daarmee wordt PM0.1 bedoeld (deeltjes met een diameter onder de 0.1µm = 100nm).
Die dringen dieper in het lichaam door en hebben per gewichtseenheid een zeer veel groter oppervlak, waardoor ze reactiever zijn en meer toxische last kunnen meedragen.

Het eerste, en tot nu toe enige gepubliceerde, onderzoek naar concentraties UFS enerzijds en medische gevolgen anderzijds is uitgevoerd onder leiding van het RIVM door Janssen, N.A.H., Hoekstra, J., Houthuijs, D., Jacobs, J., Nicolaie, A., & Strak, M. (2022 en heet ‘Effects of long-term exposure to ultrafine particles from aviation around Schiphol Airport’. Deze publicatie is op deze site besproken, zie https://www.bjmgerard.nl/persbericht-rivm-over-ultrafijnstofonderzoek-rond-schiphol/ (met daarin een doorverwijzing naar het rapport).

(Men moet dit als volgt lezen: als de over lange tijd gemiddelde concentratie van UFS 3500 deeltjes per cm3 is, is het risico op medicijngebruik voor hoge bloeddruk binnen de blootgestelde doelgroep 5% hoger dan binnen een niet-blootgestelde controlegroep. Het getal 1,05 is het Relatieve Risico RR.
Zou de concentratie 7000#/cm3zijn geweest, dan was datzelfde extra risico 10% geweest. Dan had er dus RR = 1,10 gestaan. De eenvoudige aanname dat effecten evenredig zijn heet een lineair of eerste orde-verband).

Het Schipholonderzoek richtte zich op zes hoofdcategorieën, met daarbinnen een onderverdeling. Binnen die onderverdeling lieten vier categorieën een sterk verband zien. Deze zijn hierboven afgedrukt. Daarnaast waren er categorieën die een positief verband lieten zien dat niet sterk genoeg was, en in enkele gevallen was er een omgekeerd verband.
De cijfers zijn gecorrigeerd voor allerlei mogelijke andere verklaringen (als PM2.5 en geluid) en hebben dus puur betrekking op UFS van vliegtuigen.
Het RIVM meent dat verder onderzoek  nodig is.

Transport & Environment (T&E), de lobbyorganisatie in Brussel voor de natuur- en milieuorganisaties, heeft onderzoeksbureau CE Delft gevraagd om een schatting te maken van de extra ziektelasten rond 32 grote luchthavens in Europa (de EU, Groot-Brittanië, Zwitserland en Noorwegen).
Dit onderzoek is gepubliceerd op 25 juni 2024 en is de aanleiding voor dit artikel. Het is te vinden op https://www.transportenvironment.org/articles/ultrafine-particles-from-planes-put-52-million-europeans-at-risk-of-serious-health-conditions . Aldaar het persbericht, doorlinkmogelijkheid naar het volledige rapport van CE Delft en naar de Briefing door T&E, die gelezen kan worden als een samenvatting.

Methode en uitkomsten
CE Delft heeft zich geheel op het RIVM-onderzoek rond Schiphol  gebaseerd. Noodgedwongen, want er was geen andere studie die in voldoende detail èn de concentraties èn de medische effecten gemeten had.
De rest is een kwestie van lineaire extrapolatie en databanken. Men neemt een heleboel dingen aan, steeds op de eenvoudigste wijze. De concentraties in de afstandsbereiken <5km, 5-10km, en 10-20km worden via een op het aantal vliegbewegingen gebaseerde evenredigheid afgeleid van idem op Schiphol via een gemiddelde concentratie per afstandsinterval. Via de RR per 3500#/cm3 op Schiphol wordt een RR per afstandsinterval voor elk van de 31 andere vliegvelden afgeleid.
Dat leidt, voor alle 32 vliegvelden samen, tot onderstaande verzamel-RR per afstandsklasse.

Daarna zoek je op hoeveel mensen er bij elk vliegveld in de betreffende afstandsintervallen wonen en hoeveel mensen uit die groep zonder vliegveld diabetes enzovoort zouden hebben gehad. De RR levert dan hoeveel extra mensen er een medisch effect hebben dat er niet geweest zou zijn als het vliegveld er niet geweest was.
Een getallenvoorbeeld.
Stel, binnen 20km van een vliegveld wonen 1.000.000 mensen en daarvan zouden er zonder vliegveld 50.000 diabetes hebben gehad (op basis van bekende medicatie). De aanwezigheid van het vliegveld veroorzaakt, over alle afstandsklassen binnen die 20km, gemiddeld 4% extra gevallen (RR=1.04). Met vliegveld hebben er dan 52.000 mensen diabetes. De 2000 verschil is dan in absolute zin het extra aantal gevallen.

Zodoende komt men tot 280.000 extra gevallen van hoge bloeddruk, 330.000 extra gevallen van diabetes en 18.000 extra gevallen van dementie. Binnen 20km van de 32 vliegvelden samen wonen 53 miljoen mensen.

CE Delft meldt dat in het Schipholonderzoek een aantal reële medische effecten gevonden zijn met onvoldoende significantie om mee te nemen. Het is dus niet ondenkbaar dat er meer effecten zijn.

CE Delft waarschuwt er nadrukkelijk voor  dat men voor dit resultaat veel versimpelingen en aannames heeft moeten doen, dat verdere studie nodig is (o.a. epidemiologisch veldwerk als dat van het RIVM), en dat men niet te kritiekloos met het rapport om moet gaan.

Wat valt er aan die extra UFS-concentraties  te doen?
Daartoe legt CE Delft uitvoerig uit hoe uitlaatgassen van vliegtuigen schei- en natuurkundig werken.
Op deze site is dat al vaker behandeld (bijvoorbeeld https://www.bjmgerard.nl/%ef%bb%bfover-luchtvervuiling-die-geen-ultrafijn-stof-is/ ). De uitleg van CE Delft loopt langs dezelfde lijnen als die  op deze site gepraktiseerd wordt,  Nieuw is dat ook smeerolie van vliegtuigmotoren een beperkte luchtvervuiling met zich meebrengt.

Onmiddellijk na de uitlaat bestaat het PM-aanbod uitsluitend uit non-volatiel PM en dat is in praktijk roet en/of black carbon. Black carbon is zuivere koolstof, roet bestaat uit black carbon waarin of waar tegenaan na verloop van enige tijd troep zit. Roet is een van de duidelijkste determinanten van schadelijkheid.  Black  carbon ontstaat door onvolledige verbranding van z.g. dubbele en aromatische moleculen. Aromatische verbindingen bevatten een ringvormige benzeenstructuur.

In kerosine zit meestal 0,03 – 0,06 gewichtsprocent (300-600 ppm)  zwavel. Die verbrandt en enige tientallen tot honderden meters verderop in de uitlaatpluim combineren en reageren die door met o.a. het uit de verbranding afkomstige water tot volatile PM. Die op hun beurt weer zich met de vorming van roet kunnen bemoeien.

Chemisch gezien moet je dus kerosine willen met zo weinig mogelijk zwavel (liefst 0), en met zo weinig mogelijk aromaten (ondergrens bij de huidige motortechniek ruim 8%).

Daartoe bestaan twee hoofdroutes:.
Of je geeft fossiele kerosine een hydrotreatment die alle zwavel en alle dubbele bindingen en ringstrusturen effectief wegreduceert  (in feite was je de fossiele kerosine met waterstof). Dat is een gangbaar chemisch-technologisch proces. Op die manier wordt bijvoorbeeld alle autobrandstof onder de verplichte 10 ppm geduwd. Nadeel is dat je er kostbare waterstof voor nodig hebt en als die groen moet, wordt die schaars.
Of je gaat werken met synthetische kerosine die van nature nauwelijks zwavel en aromaten bevat. CE Delft gebruikt het voorbeeld van UCO-HEFA, in de volksmond fritesvet-kerosine. Die grondstof heeft overigens ook een hydrotreatment nodig, maar dat geldt niet voor alle soorten synthetische brandstof.

Kortom, kerosine zonder zwavel en met weinig aromaten kan technisch gewoon vervaardigd worden.
Uit het CE Delft-rapport blijkt dat het volledig zwavel- en aromaatvrij maken van kerosine tot drie tot vier keer lagere concentraties en tot drie tot vier keer minder extra ziektegevallen zou leiden.

Het meest recht toe, recht aan is om dergelijke kerosine verplicht te stellen, bijvoorbeeld via de Europese wetgeving. Voor auto’s is dat al decennia de praktijk.


Schipholwatch schrijft erover

Op https://schipholwatch.nl/2024/06/25/gezondheid-miljoenen-europeanen-onnodig-in-gevaar-door-vieze-kerosine/  schrijft  Schipholwatch overhet algemeen adequaat over de studie. Hierover echter twee opmerkingen.

Schipholwatch voegt een eigen commentaarpassage toe, namelijk dat de vliegtuigindustrie voor een paar cent per liter zijn kerosine net zo schoon kan krijgen als autobrandstof al decennia moet zijn, en dat dat schandalig is.
Deze bewerkingskosten staan niet in het rapport van CE Delft. Zoiets staat wel in de Briefing die opdrachtgever T&E heeft doen uitgaan bij de presentatie van het CE Delft-rapport. Daar spreekt T&E over bijna vijf cent per liter. Schipholwatch had hier zijn bron nauwkeuriger moeten aangeven.
Dit neemt niet weg dat het commentaar op zijn plaats is.
Even weer een getallenvoorbeeld.
In een A320 NEO kan ongeveer 25000 liter kerosine. Als het bijna 5 cent/liter kost om die volledig te ontzwavelen, kost een vlucht dus ongeveer €1200 meer. Er zitten als regel ca 180 mensen in, dus een ticket bij maximaal vliegbereik zou er een kleine zeven Euro duurder door worden.
Om deze ene vlucht te ontzwavelen, zou (volgens T&E) 190kg waterstof nodig zijn.

Voor eerdere interesse in dit onderwerp zie Roet en zwavel uit straalmotoren, dat kan veel minder en kun je zwavelvrije kerosine kopen-vervolg .

Schipholwatch laat een van de twee hoofdroutes uit het CE Delft-rapport weg, namelijk die via synthetische kerosine. Schipholwatch is daar geen fan van, maar in dit geval had dit, naar mijn mening, wel vermeld moeten worden.
Ontzwavelen van kerosine is een noodoplossing. De echte oplossing is een combinatie van minder vliegen en op synthetische kerosine vliegen.

Eindhoven Airport
In bovenstaande kaart de 5-, 10- en 20km-cirkels rond het midden van de baan van het vliegveld. De drie kruisjes nabij het vliegveld geven de drie UFS-meetpunten van het Regionale Meetnet. Van juli 2021 t/m juni 2022 zat de gemiddelde concentratie daar rond de 14.500 #/cm3 , waarvan grofweg 10.000#/cm3 vanwege de luchtvaart. Zie https://www.bjmgerard.nl/luchtmetingen-op-en-rond-eindhoven-airport-in-2022/ .

Vliegveld Eindhoven is niet meegenomen in het CE Delft-rapport.
Maar de redeneerwijze van CE Delft is dermate geabstraheerd en vereenvoudigd dat men de methode moeiteloos kan transplanteren naar de 5-, 10-, en 20km-cirkels rond het vliegveld.

Gemiddeld hebben de 32 onderzochte vliegvelden 390.000 vliegbewegingen per vliegveld. Eindhoven Airport is met 41.500 vliegbewegingen ca 10,5 keer zo klein dan het gemiddelde grote Europese vliegveld. Vanwege de lineaire aanname van CE Delft zijn dan ook de RR’s 10,5 keer zo klein. Komt wat vervuiling door het militaire vliegen bij.
Dus doe de RR’s hierboven gedeeld door ongeveer 10.

Zodoende is de RR voor dementie binnen de 5km-cirkel 1,02 – het ‘natuurlijke’ aantal dementiegevallen in Meerhoven, Wintelre, Acht, west-Eindhoven en het grootste deel van Veldhoven wordt met 2% verhoogd.
Zo ook is de RR voor zelf gerapporteerde diabetes in de 10km-zone 1,01. De gemeenten Eind-hoven, Veldhoven, Aalst-Waalre, Best en Oirschot liggen geheel, en Son en Breugel en Eersel liggen gedeeltelijk binnen die cirkel. Samen zijn die goed voor een kleine 400.000 inwoners. Ca 5% heeft volgens het CBS diabetes-2, dus ergens rond de 20000. Het vliegveld maakt daar dus 20200 van.

Lokale politiek
Misschien moet de lokale of regionale politiek CE Delft opdracht geven hun rapportage voor de omgeving van vliegveld Eindhoven uit te voeren?

Roet en zwavel uit straalmotoren: dat kan veel minder! (update)

Update: dit is al weer een ouder artikel. Er zijn jongere en betere artikelen op deze site over hetzelfde onderwerp

(Afbeelding te vinden op https://esd110.mit.edu/blog/black-carbon-emissions-aircraft )

De context
Tot de zorgen van de omwonenden van vliegvelden (zoals in mijn geval Eindhoven Airport) hoort het door vliegtuigen geproduceerde (ultra)fijn stof.

Straalverkeersvliegtuigen vliegen op kerosine, om precies te zijn op Jet A. Militaire straalvliegtuigen vliegen op het nauw verwante JP-8. Op Eindhoven Airport overheerst het aantal civiele vliegbewegingen.
Als men wil aansluiten bij wat bij het algemene publiek bekend is, kan men kerosine het beste vergelijken met rode diesel (zwavelhoudende dieselolie die tot voor kort verkocht mocht worden voor tractoren, boten etc). Alle diesel, die nu voor auto’s, boten, etc verkocht wordt is nagenoeg zwavelvrij gemaakt. Zo niet kerosine.

Vliegen hoort bij de menselijke activiteiten die het moeilijkst te verduurzamen zijn.
Pakweg tot 700 km kan de Hogesnelheidslijn (HSL) uitkomst bieden, en over pakweg tien jaar kan hybride-elektrisch vliegen met propellervliegtuigen uitkomst bieden voor lastig met de trein te bereiken locaties tot pakweg 1000km.
Voor langere afstanden zal het straalverkeersvliegtuig blijven bestaan en dat zal blijven vliegen op kerosine, of misschien op synthetische brandstof die voor kerosine kan doorgaan (al dan niet uit biomassa).
Op dit moment bestaat er nog nauwelijks synthetische vliegtuigbrandstof, en is het recept voor verduurzaming dus gewoon zuiniger, efficienter en minder, dus selectiever, vliegen.

Er zal dus in 2050 nog steeds gevlogen worden, heel wat meer dan nu, en dat zal voor een groot deel nog steeds met straalverkeersvliegtuigen gebeuren.
Dat roept de vraag op of de nadelen voor de leefomgeving, die die straalverkeersvliegtuigen met zich meebrengen, verkleind kunnen worden. In directe zin gaat het om geluid en luchtkwaliteit, in indirecte zin om waardedaling van woningen, gezondheidseffecten enz.
Daarnaast heeft vliegen (vooral de ongebreidelde groei) steeds zwaarder wegende nadelen voor het klimaat.

Ultrafijn stof-verdeling rond het vliegveld, 2020, alleen civiel. Bron gemeente Eindhoven.

Dit artikel gaat vooral over (ultra)fijn stof omdat dat de belangrijkste vliegtuiggebonden component van luchtvervuiling is, en omdat dat stof invloed heeft op het klimaat.

(Ultra)fijn stof  (in het Engels Particulate Matter PM, dus deeltjes) bestaat uit twee hoofdcomponenten: deeltjes die afkomstig zijn van zwavel in kerosine, en deeltjes die afkomstig zijn van onvolledige verbranding van diezelfde kerosine.

Zwavel en stikstof
Kerosine mag tot maximaal 3000ppm zwavel bevatten (0,3 gewichts%), maar zit in praktijk meestal tussen de 400 en de 800ppm. (Bij benzine en dieselolie voor auto’s is de limiet 10ppm). Die ontzwaveling kan plaats vinden met gevestigde standaardtechnieken. De brandstofprijs zou 1% omhoog gaan als kerosine ontzwaveld werd tot 15ppm.
De zwavel verbrandt tot SO2 en als dat buiten de motor in contact komt met water oxideert dat door tot SO3 , waardoor een oplossing van zwavelzuur ontstaan is.
Als dat zwavelzuur in contact komt met  ammoniak (dat vooral uit de in dit gebied overvloedig aanwezige veeteelt komt), ontstaan fijne kristalletjes ammoniumsulfaat (al dan niet met aanhangend water). Dit heet een secundary inorganic aerosol (SIA) en die maken deel uit van het (ultra)fijn stof.
Door de hoge temperaturen in de motor reageert een deel van de stikstof uit de lucht tot stikstofoxiden, die na wat omzwervingen op vergelijkbare wijze ammoniumnitraat  vormt, ook een SIA uit het (ultra)fijn stof.

Hoe giftig SIA’s precies zijn is omstreden. In isolatie niet of nauwelijks, in combinatie met andere giftige stoffen misschien wel. Tot nader order houdt de wetenschap het erop dat de gemiddelde giftigheid van SIA’s gelijk is aan die van het PM2.5, waarvan ze deel uitmaken.

Voor verdere info verwijs ik naar eerdere artikelen op deze site, zie Kun je zwavelvrije kerosine kopen? En Kun je zwavelvrije kerosine kopen ? (vervolg)  . Let wel  dat deze artikelen al weer ruim twee jaar oud zijn!

Roet en andere onvolledige verbrandingsproducten
Dat vraagt helaas een beetje scheikunde.
Kerosine is een ingewikkeld mengsel dat uit honderden koolwaterstoffen bestaat en wat sporenelementen (waaronder dus zwavel).
Koolwaterstofmoleculen bestaan uit ketens aan elkaar geregen koolstofatomen, waarvan de overblijvende vrije plaatsen met waterstofatomen bezet zijn. Koolstofatomen kunnen met een enkele of een dubbele binding aan elkaar zitten.
Als het molecuul geen ringstructuur en geen dubbele binding heeft, heet het verzadigd (saturated). Butaan (van het butagas), nonaan (zie onder) of paraffine zijn voorbeelden.

Als het molecuul geen ringstructuur en één dubbele binding heeft, heet het een olefine. Onder als voorbeeld 1-noneen.

Dit is een voorbeeld van een olefine

Als het molecuul geen ringstructuur en meerdere dubbele bindingen heeft, heet het meervoudig onverzadigd (dezelfde aanduiding als op pakjes margarine).
Als het molecuul wel een ringstructuur heeft en meerdere dubbele bindingen, heet het ‘aromatisch’. De eenvoudigste aromatische verbinding is de benzeen-zeshoek.

Benzeen is de kleinste aromatische verbinding en bouwsteen voor grotere

Zitten er twee van die zeshoeken aan elkaar, dan heet het naphtaleen.

Zitten er drie of meer van die ringen aan elkaar, dan heet het een PAK (Polycyclische Aromatische Koolwaterstoffen).

Roet bestaat grotendeels uit koolstof (vaak vermengd met aanhangende rotzooi) en heet ook wel Black Carbon.
Daarnaast kan kerosine minder vergaand verbranden/ontleden tot stoffen die nog geen koolstof zijn en nog vloeibaar. Die noemt men vluchtige aerosolen. Die kunnen of vrij in de lucht komen of als laag op het roet gaan zitten.

Sorry, maar dit college was even nodig.

Kenmerken van gangbare en synthetische vliegtuigbrandstof

Deze tabel bevat de gegevens van ‘’een soort civiele en tamelijk zwavelrijke Jet A in kolom 2), één soort militaire JP-8 die overigens ongeloofwaardig weinig zwavel bevat, en één soort synthetische brandstof FT-SPK. Kolom 4 en 5 zijn mengsels van FT-SPK met er eerste twee.
D5453 geeft het totale zwavelgehalte in ppm.

FT staat voor Fischer-Tropsch en SPK Synthetic Paraffinic Kerosine. Dat is een gevestigde techniek om uit andere grondstoffen via koolmonoxide en waterstof synthetische brandstof te maken (in dit geval dus kerosine). Het uitgangsmateriaal is in dit artikel aardgas (de Gas-To-Liquid techniek GTL), of kolen.
Er is een informatieve Wikipediapagina https://nl.wikipedia.org/wiki/Fischer-Tropschbrandstoffen .
Bovenstaande tabel komt uit een presentatie dd juni 2016 door het Southwest Research Institute (SWRI) uit Texas aan de ETH in Zürich ( www.nanoparticles.ch/archive/2016_Khalek_PR.pdf ). Er staat niet bij wat in dit geval het uitgangsmateriaal van de FT is.

Een andere publicatie (Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels dd 2014) is saaier en minder toegankelijk voor de leek, maar informatiever. Die komt uit het tijdschrift Atmospheric Chemistry and Physics  (ACP) www.atmospheric-chemistry-and-physics.net/ . Zie voor het artikel zelf Reductions in aircraft particulate emissions due to the use of FT-fuels_acp-14-11-2014
Alle publicaties op dit gebied stellen dat het roetgehalte in uitlaatgassen van straalmotoren zeer sterk bepaald wordt door het aantal dubbele bindingen en het aantal ringen in de brandstof. In praktijk bij kerosine vooral het percentage aromaten, nog verder versimpeld hoeveel % benzeen er in de kerosine zit.

Wat het Zürichse staatje nu uitwijst, en wat ook de andere publicatie zegt, is er in synthetische brandstoffen zeer veel minder benzeen (en naphtaleen enz) zit, en dat er dus veel minder roet afkomt. Dat is in metingen te zien, bijv. onderstaande figuur uit de Zürichse presentatie van het SWRI:

Daarin slaat “Regulation” op een oude en lakse ICAO-norm die alleen over roet bij het opstijgen gaat. Het verschil tussen links en rechts geeft vooral het nut van deze norm weer, welk nut dus tamelijk klein is.

Hoe dan ook, het plaatje toont duidelijk dat veel aromaten leiden tot veel roet en vluchtige vervuiling, en dat nagenoeg geen aromaten leidt tot heel weinig idem. Vooral in de “idle” stand van de motoren (dus bijv. bij het proefdraaien of taxiën) zijn de verschillen groot.

Het artikel in ACP vindt vergelijkbare grote verschillen. Zuivere synthetische brandstof produceert ruim 4 tot 6 keer zo weinig roet als standaard JP-8 (de blend zit daar tussen in), en ook veel minder vluchtige aerosolen.
De zwavelemissies zijn bij synthetische brandstof nagenoeg afwezig.

Het effect van de vluchtige aerosolen op de lokale luchtkwaliteit in de omgeving is (volgens ACP) bij koud weer groter.

Klimaat
Het zwarte roet heeft een verwarmende invloed op het klimaat, de witte sulfaataerosolen een koelende invloed. Beide kunnen als condensatiekern gaan fungeren die helpen bij het vormen van wolken, waarvan de invloed dubbelzinnig is. Het totale effect is vooralsnog onduidelijk.

Het effect van het zwavelgehalte in de brandstof op de gevormde contrail

Behalve de FT-techniek loslaten op aardgas en kolen, zijn er ook andere technieken om aromaat- en zwavelarme biodiesel te maken. Het kan ook uit tweede generatie- biomassa (zie de eerder genoemde artikel over zwavelarme kerosine op deze site), al dan niet via een FT-route.

Er moet nog veel onderzoek plaatvinden. Het voert te ver om daar op deze plaats dieper op in te gaan.