Waarom de Limburgse over-stroming een klimaatcomponent had en hoe dat werkt

De overstroming
Ten tijde van dit artikel stond het aantal doden van de overstroming in Limburg, België en Duitsland op ongeveer 200, en is er voor miljarden schade aangericht. Alleen al in de gemeente  Valkenburg werd de schade getaxeerd  op 400 miljoen euro.

Wat opviel is dat er veel regen per uur viel, dat de regen lang viel, en dat het buiencomplex zich nauwelijks verplaatste.

Meteen al werd gezegd, ook door politici en bestuurders, dat de ramp een klimaatcomponent had. Dat is ook zo (en de kans op herhaling neemt dus toe). Maar waarom is dat zo en hoe zit het mechanisme in elkaar?

(Spoorlijn in Limburg in juli 2021 – foto Prorail)


Wie een situatierapportage wil zien op Nieuwsuur van 17 juli 2021, en Kuipers Munneke die het uitlegt, kan terecht op https://nos.nl/nieuwsuur/video/2389772-hoe-speelt-klimaatverandering-een-rol-bij-de-watersnood-in-limburg .

EPP’s en SEPP’s
Eerst even een citaat.

Our results suggest that storms will have higher peak intensity, longer duration and will be more frequent across the whole of Europe. Current storms already produce a large number of flash floods, with their potential impact depending on land use, terrain slope, drainage, and other factors. SEPP increases would significantly increase this flash flood potential, as an MCS would be more likely to “stagnate” on a locality, exposing it to extreme precipitation of longer duration.”.

Dit is geen beschrijving  van ‘Limburg’, maar een wetenschappelijke analyse die er toevallig net aan vooraf ging. Het citaat komt uit de studie “Quasi-Stationary Intense Rainstorms Spread Across Europe Under Climate Change” en stond in de Geophysical Research Letters van 16 juli 2021. De studie is open access en te vinden op https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL092361 (en daar .pdf te downloaden). De hoofdauteur is Abdullah Kahraman van de Universiteit van Newcastle.
De timing klinkt helderziend, maar er is veel wetenschap op dit gebied en de statistische kans dat een nieuw artikel samenvalt met een ramp wordt steeds groter.
Kahramans onderzoeksgebied is het grootste deel van Europa en de Middellandse Zee, maar men kan voor Canada en de VS vergelijkbare uitspraken doen.

Het verhaal bevat veel meteorologenvaktaal en is daarom taai om te lezen. Als je je best doet, krijg je er toch wel iets van mee.
Een MCS is een Mesoscale Convective System. Dat is een al eerder gedefinieerde vakterm en is een georganiseerd cluster van onweersbuien, dat ten minste enkele uren aanhoudt en een aaneengesloten neerslaggebied vormt. Op onze breedtegraden is zo’n ding typisch 100km groot en houdt het minstens drie uur uit, hoewel het bijbehorende wolkendek nog langer kan bestaan.

Wie zonder vaktaal een indruk wil krijgen en ook een reactie van het KNMI wil lezen, kan ook op een goed artikel in de NRC terecht, op www.nrc.nl/nieuws/2021/07/18/buien-zullen-vaker-lang-blijven-hangen-a4051551#/handelsblad/2021/07/19/#106/ .

Kahraman heeft geprobeerd in te schatten wat er uit zo’n complex kan komen en hoe groot de kans is dat dat, nu en in de toekomst, gebeurt. Nu zijn dit complexe verschijnselen en niet alle water, wat in zo’n systeem zit, haalt daadwerkelijk de grond (kan onderweg ook weer verdampen), dus heeft hij een vereenvoudigd begrip Extreme Precipitation Potential (EPP) gedefinieerd, zijnde een systeem waarin de luchtvochtigheid en de stijgsnelheid binnen het buiencomplex minstens drie uur  boven bepaalde drempels zit.
Als een EPP ‘Slow-moving’ is (‘slow’ is, versimpeld uitgedrukt, < 3m/sec) is de EPP in praktijk quasi-stationair (de titel van het artikel) en heet het een SEPP.
Limburg e.o. was dus de praktijkuitvoering van het geIdealiseerde begrip SEPP.

Vervolgens heeft Kahraman er als randvoorwaarde klimaatscenario RCP8.5 ingestopt. Dat is een heftig  scenario, op basis waarvan het in 2100 4,3°C warmer wordt. De wereld streeft ernaar om een stuk minder op te warmen en het is goed om dat als relativerende kanttekening bij het artikel te plaatsen.
Het zo aangestuurde rekenmodel rekent over de 10 jaar 1998 t/m 2007, en over een 10 jaar-periode rond het jaar 2100.  

Het resultaat laat zich vangen in onderstaande afbeelding.
De kleurcode geeft daarin aan het jaargemiddelde aantal EPP’s en SEPP’s per 100*100 – blok in de periode rond 2000 en de periode rond 2100.
Als de EPP’s en de SEPP’s gelijkmatig verdeeld zouden zijn (wat niet zo is) zou het aantal EPP’s van 24 naar 175 per 100*100km gaan (*7,4), en het aantal SEPP’s van 0,7 naar 7,2 (*bijna 11).


In de afbeelding hieronder het maandgemiddelde aantal gebeurtenissen (EPP, SEPP, >100mm/uur en >200mm/uur) in het onderzoeksgebied als geheel, voor alle maanden. Dit om het seizoenseffect te tonen.
Als je de vertikale as door 880 deelt, heb je het gemiddelde aantal per maand op 100*100km.

Klimatologische oorzaken: vochtige lucht en de veranderende straalstroom
De pers zegt dat de heviger regenval komt omdat er meer waterdamp in de lucht zit, waardoor er bij een bui meer uitkomt. Dat is waar: de natuurkunde van de dampspanning (die in een grijs verleden nog op het curriculum van het VWO stond) leert dat in de praktisch bestaande omstandigheden van de atmosfeer elke °C meer temperatuur leidt tot 7% meer mogelijke waterdamp in de lucht (dus als die lucht verzadigd is).
Een bijkomend element, zegt Kahraman, is dat in de zomermaanden de stijgsnelheid van de vochtige drempel vaker boven de drempel van 2m/sec komt.
In feite legt de pers hier dus een EPP uit.
Ook Kuipers Munneke legt op Nieuwsuur een EPP uit (zonder dat zo te noemen). Kuipers Munneke zegt dat de combinatie van beide effecten (vochtiger lucht en meer stijgsnelheid) erop neer komt dat 10 C warmer 15% meer regen betekent.

Om uit te leggen waarom het aantal SEPP’s nog meer stijgt dat het aantal EPP’s, is een aanvullende verklaring nodig.
Een buiencomplex reikt tot grote hoogte en de verplaatsingssnelheid van het complex aan de grond hangt daardoor af van de windsnelheden op grote hoogte. Kahraman suggereert dat zijn uitkomsten verklaard kunnen worden door aan te nemen dat de klimaatverandering de straalstroom ’s winters versnelt en ’s zomers vertraagt. De winterstormen zouden dan sterker moeten worden.

Het laatste wetenschappelijke woord is er nog niet over gezegd.

Waarom doet het klimaat iets met de straalstroom?
Eerst: wat is de straalstroom?
De straalstroom is een soort meanderende rivier van lucht op 10 km hoogte. Zie ter illustratie een afbeelding van de National Weather Service van de VS (dienst NOAA). Die legt het mooi uit op www.weather.gov/jetstream/longshort/  .

De wind binnen de straalstroom gaat hard (kleine 200km/uur). Daarom duurt een vliegreis van de VS naar Europa korter dan andersom en zijn er vogels die hem voor de trek gebruiken.
Het patroon van de straalstroom als geheel beweegt meestal langzaam naar het oosten, maar soms staat het stil of schuift zelfs terug.
De straalstroom op grote hoogte heeft invloed op de hoge- en lagedrukgebieden op de grond. Bij een bult naar buiten ligt aan de Noordkant een  gebied waar de lucht, tegen de klok indraaiend omhoog komt – aan de grond ligt dan een lagedrukgebied of depressie. Bij een bult naar binnen ligt aan de zuidkant een gebied waar de lucht, met de klok meedraaiend, omlaag gaat – aan de grond ligt dan een hogedrukgebied.
Stijgende lucht (in  een lagedrukgebied) koelt af en regent uit – boven Limburg lag dus een depressie. Dalende lucht warmt op en is droog – in het recente bosbrandgebied in het westen van Canada en de VS, en in de afbeelding in Spanje.
Dit alles is te simpel verteld. In werkelijkheid is de straalstroom, en zijn relatie met wat aan de grond gebeurt, een complex en dynamisch proces. OP het eind van dit verhaal een mooie simulatie van de NASA.

Maar simpel is daarentegen weer dat de straalstroom natuurkundig in essentie een warmtemachine is die opereert bij de gratie van een temperatuurverschil. Net als een straalmotor warmte in beweging omzet bij de gratie van een temperatuurverschil tussen pakweg 2500°C binnen de motor en -40°C erbuiten, zo zet de straalstroom warmte om in beweging bij de gratie van een temperatuurverschil tussen evenaar en polen (in dit geval de Noordpool).

De extra broeikasgassen in de atmosfeer verwarmen de polen twee tot drie keer zo snel als de evenaar. In  meteorologenjargon heet dat de Arctic Amplification. Kahraman verwijst daarnaar.
Daardoor wordt met name ’s zomers het verschil tussen pool en evenaar kleiner, en daarmee ook de drijvende kracht van de straalstroom. Stilstaande weerpatronen worden waarschijnlijker en daarmee is de toename van de S in SEPP uitgelegd.
Omdat het temperatuurverschil tussen evenaar en pool in de winter groter is dan in de zomer, is het verklaarbaar dat SEPP’s vooral in de zomer bestaan.

Zolang de klimaatverandering het temperatuurverschil tussen evenaar en polen blijft terugdringen, is het SEPP-probleem structureel.

Dit is een still uit een mooie NASA-simulatie van de straalstroom. Het complexe karakter wordt in bewegende beelden veel duidelijker. De speelduur is ongeveer een maand in juni en juli 1988.
De animatie is te vinden op http://www.weather.gov/media/jetstream/constant/jetstreamanimation.mp4 .

Voor een eerder artikel (al weer december 2014) op deze site zie Extreem weer, straalstroom en klimaat en (uit 2021) Artikel over hittegolf in Canada en profetisch over extreme regenval .