Abrel
Abrel is een organisatie van omwonenden van Nederlandse vliegvelden, meestal verenigd in de wettelijke COVM-overlegorganen (de COVM van Eindhoven is opgenomen in het LEO-overleg). Zie https://stichtingabrel.nl/ .
BVM2, g een wettelijk overlegorgaan maar wel een bewonersvertegenwoordiging, is zoiets als geassocieerd lid.
Bij de recente jaarvergadering van Abrel op 25 november 2023 was de Delftse hoogleraar vliegtuigbouw Melkert aanwezig om vragen te beantwoorden. Melkert is altijd erg bereidwillig om op dit soort uitnodigingen in te gaan en daarvoor moet hij geprezen worden.
In de presentatie, die gebruikt werd om een lange reeks vragen te beantwoorden, gingen een paar sheets over de vraag of elektrisch vliegen stiller was dan ‘gewoon’) fossiel) vliegen. Melkerts boodschap was dat dat, bij de huidge stand van de kennis (er bestaat immers nog geen serieuze elektrische vliegtuigen waaraan iets te meten valt) tegen lijkt te vallen. Hij gebruikte daartoe een wetenschappelijke studie ‘Conceptual estimation of the noise reduction potential of electrified aircraft engines’ uit Acta Acoustica’ dd maart 2023 van Geyer en Enghardt die te vinden is op https://doi.org/10.1051/aacus/2023009 .
Ook BVM2 heeft interesse in de vraag ( https://bvm2.nl/hybrideelektrisch-vliegen-kan-onder-voorwaarden-beperkt-nut-hebben/ ). Reden om op deze plaats aandacht te besteden aan genoemde wetenschappelijke publicatie.
Hoe kenmerkt men het geluid van één vliegtuig?
We zijn gewend aan de geluidscontouren, die gevormd worden door het gezamenlijke geluid van heel veel vliegtuigen, soms voorzien van een straffactor, en dan opgeteld over een jaar.
Voor één vliegtuig werkt dat niet. Er is een standaardisatie nodig en internationaal doet men dat door het geluid dat een bepaald vliegtuig maakt vast te prikken op drie punten op de grond:
- Approach (landing). Dat ligt in het verlengde van baan, op 2000m vanaf het begin. Het vliegtuig zit dan modelmatig op 120m hoogte. In de ZW-richting landend zit je dan ongeveer boven de Poot van Metz, nabij het Goederen Distributie Centrum.
- Takeoff – sideline ligt op 450m van de startbaan (dwars gerekend) op de grond, ter plekke van waar bij het opstijgen de herrie de grootste is). In Eindhoven zit je dan aan beide kanten ongeveer op de grens van het vliegveld
- Takeoff – flyover ligt op 6500m vanaf het begin van de startbaan (in de vliegrichting). In Eindhoven is dat ongeveer tussen ZandOerle en het gehucht Halfmijl, in de ZW-richting opstijgend.
Uiteraard liggen de punten andersom als men in de NO-richting vliegt.
De inrichting van het onderzoek
Het onderzoek gaat uit van drie ‘gewone’ motoren, waaraan men gangbare kengetallen hangt die zo goed mogelijk vergelijkbaar zijn.
Alle verkeersvliegtuigen op Eindhoven Airport hebben een turbofanmotor (bovenste plaatje). Een deel van de lucht gaat door de eigenlijke motor (het deel het dichtste op de as). De motor drijft een as aan en op die as een ‘fan’ (eigenlijk een soort inwendige propeller), die de lucht door de eigenlijke motor jaagt, en door een soort huls die ruim om de eigenlijke motor heen zit. De verhouding van de hoeveelheid lucht die door de huls gaat, en die door de eigenlijke motor gaat, heet de bypass verhouding. Hoe nieuwer het vliegtuig, hoe groter de bypass verhouding (en hoe zuiniger en stiller het vliegtuig, maar hoe groter de motor).
Het onderzoek werkt met een turbofan met een bypass verhouding van 6 en een met een bypass verhouding van 10.
In een turbofan zit alle energie in de uitstromende jet.
De turboprop is van binnen ook een straalmotor, maar nu wordt met een turbine bijna alle energie uit de uitstromende jet gehouden (in het onderzoek 90%) en toegevoerd aan een propeller. Bijvoorbeeld de Hercules vliegtuigen op de vliegbasis zijn turboprops, en veel kleinere privévliegtuigen ook.
Hercules vrachtvliegtuig
Door de bank genomen zijn turboprops efficiënter bij lagere snelheden en lagere vlieghoogtes, en turbofans idem bij hogere.
Meestal denkt men bij turboprops aan kleinere vliegtuigen op korte en middenafstandsbestemmingen. Een volbepakte Hercules haalt bijvoorbeeld de Atlantische Oceaan niet, hoewel hij nog altijd 3800km vliegen kan (ongeveer Eindhoven-Bagdad).
De onderzoekers maken nu van elk van de drie vliegtypes in gedachten een elektrische tegenhanger die (voor zover dat mogelijk is) hetzelfde presteert. Dat betekent dat het brandstofdeel eruit gaat en een elektromotor ervoor in de plaats.
Enerzijds betekent dat dat de herrie van de verbranding, de turbine en de jet wegvalt. Anderzijds betekent dat dat, om de verdwijnende jet te compenseren, de fan respectievelijk de propellers harder moeten gaan draaien.
Het onderzoek bestaat er in dat de onderzoekers modelmatig alle andere dingen zoveel mogelijk hetzelfde laten, en dan kijken wat het effect is van alleen de virtuele ingreep in de motor.
De uitkomsten
De onderzoekers geven hun uitkomsten over het hele toonhoogtespectrum in de vorm van vergelijkende plaatjes (die kortheidshalve niet allemaal worden afgedrukt).
Hierboven links een fossiele turbofanmotor met een bypassverhouding van 6, rechts de electrische equivalent ervan , beide in het takeoff-flyoverpunt (3).
Enerzijds vallen de posten combustor en turbine weg, en de jet grotendeels. Anderszijds moet de fan harder draaien, waardoor de rode fanbalk iets hoger uitkomt. Maar omdat bij een logaritmische schaal de grootste post onevenredig zwaar meetelt, komt de totaalsom over het hele spectrum (de zwarte balk in de tekening) bij de elektrische variant iets hoger uit.
Neemt men voor alle vliegtuigtypes en definitiepunten (dus 6*3) de zwarte balk ‘totaal’ als uitkomst, dan leidt dat tot onderstaande verzameltabel.
De belangrijkste conclusie van de onderzoekers is dat bij gelijkblijvende overige omstandigheden van elektrisch vliegen op geluidsgebied geen wonderen verwacht mogen worden, en evenmin de Europese doelstelling op het gebied van geluidsvermindering ( -4.5dB in 2050).
Bovenstaande tabel is in dB(A). Dat is een ‘zakelijke’ maat die alleen op natuurwetenschap berust (natuurkunde, wiskunde en biologie van het menselijk oor).
Maar geluid zit niet alleen in de oren, maar ook tussen de oren. Daarom is er een aanvullende maat die feitelijk gebruikt wordt voor het kenmerken van vliegvelden, de Perceived Noise en de Effective Perceived Noise (EPNdB). In die systematiek zijn aan de ‘zakelijke’ dB’s psychologische factoren toegevoegd, zoals bij voorbeeld fluittonen (in het jargon ‘tonale geluiden’). Het voert te ver om dat hier uit te leggen (zie https://en.wikipedia.org/wiki/EPNdB ). De EPNdB is de maat waaraan de toelaatnaarheid van een vliegtuig wordt gemeten. Het is een constructie van de ICAO (de VN-organisatie voor de luchtvaart).
De ‘perceived noise’-verschillen liggen voor elektrische vliegtuigen meestal iets ongunstiger dan de bijbehorende dB(A)-verschillen.
Kritisch commentaar
Het is zeer wel mogelijk om kanttekeningen te plaatsen bij opzet en uitkomsten van de studie. De auteurs doen dat zelf ook in een uitgebreide discussie- en literatuurparagraaf.
- Het is voor een normaal mens niet mogelijk om de uitkomsten te controleren. Het is ingewikkeld en men verwijst naar andere studies die bijvoorbeeld achter de betaalmuur zitten. Men moet hier afgaan op de reputatie van het peer reviewed tijdschrift Acta Acustica en op de reputatie van Melkert die het aanbeveelt.
- De kracht van het artikel is ook zijn zwakte: namelijk dat het zo weinig mogelijk aan bestaande ontwerpen verandert. Het artikel bouwt als het ware een bestaande tweemotorige A320 om in precies dezelfde A320, maar dan met elektromotoren.
Maar het is helemaal niet vanzelfsprekend dat wat voor het ene type een goed ontwerp is, dat voor het andere ook is.
De eerste motor met inwendige verbranding bijvoorbeeld van Lenoir (tevens de uitvinder van de bougie, zie https://nl.wikipedia.org/wiki/%C3%89tienne_Lenoir ) verwar je gemakkelijk met een stoommachine die in die tijd op zijn eind liep . Lenoirs motor krijg je niet onder de motorkap van je auto.
https://commons.wikimedia.org/w/index.php?curid=2234653
De motor staat in Parijs in een museum.
- De auteurs erkennen dat overigens dat er vele onzekerheden zijn. Het onderwerp ‘geluid van elektrische vliegtuigen’ is nog grotendeels onontgonnen terrein, uiteraard ook omdat er nog geen serieuze elektrische vliegtuigen bestaan. Er valt nog niet veel te meten en er is ook nog niet heel veel literatuur.
Wat er is, wordt besproken.
Een vergelijking met een NASA-publicatie pakt ongeveer hetzelfde uit als bij de auteurs.
Een vergelijking met een A320-achtig vliegtuig met als variabele 2 tot 12 propellers (door Synodinos) pakte bij acht propellers en een hybride-elektrische voortstuwing 4dB(A) gunstiger uit (all-electric had een kleiner voordeel). De bron zelf is alleen als samenvatting toegankelijk, maar het hele verhaal is (voor uiterst toegewijde lezers) te vinden op https://www.researchgate.net/publication/318760804_Noise_assessment_of_aircraft_with_distributed_electric_propulsion_using_a_new_noise_estimation_framework . Uit deze publicatie is onderstaande afbeelding overgenomen. NPD betekent daarin Noise-Power-Distance en dB SEL is zoiets als een totale geluidsintensiteit, geintegreerd over een tijdvak. Het werkt ongeveer als de Lden maar dan geintegreerd niet over een jaar, maar over een willekeurige periode en zonder straffactoren. De curves zijn niet onze Ke- of Lden – contouren, maar zijn er wel familie van.
TeDP is hybride-elektrisch (met 6 propellers), All-el is alleen batterijen.
DEP betekent Distributed Electric Propulsion.
Hier scheelt het geluid wel’.
- Er zijn wel flink wat types (hybride) elektrische vliegtuigen in ontwikkeling.
De NASA heeft bijvoorbeeld een compleet programma voor elektrisch vliegen. Zie https://www1.grc.nasa.gov/aeronautics/eap/ en dan https://www1.grc.nasa.gov/aeronautics/eap/airplane-concepts/susan/ . Het ontwerp staat voor 2040 en de noise is TBD (hetgeen wel To Be Determined zal betekenen). - SUSAN is een hybride-elektrisch ontwerp
- Sowieso zijn hybride ontwerpen (met electromotoren op een accu die onderweg wordt bijgeladen met een turbine). Hybride varianten verbruiken niet nul fossiele brandstof, maar wel veel minder.
- Of bijvoorbeeld de ES=30 van het Zweedse Heart Aerospace (waarvan een elektrische en een hybride variant ontworpen is, https://heartaerospace.com/es-30/ ) . Die zou eind jaren ’20 beschikbaar zijn, nog voor de korte afstand.
Voor het geluid gaat de claim echter niet verder dan ‘low community noise during takeoff and landing’.
Het moet een 30-zitter worden met vier motoren, dus ook hier weer een ontwerp met relatief veel en relatief kleine motoren. - ZUNUM Aero belooft ‘75% lower community noise’ zonder nadere cijfers.
- Idem de hybride-elektrische M80 van het Nederland-Duitse Maeve (ex-Delft), zie https://maeve.aero/aircraft .
Maeve M80
Kortom, de planning van nieuwe elektrische vliegtuigen biedt nog weinig duidelijkheid over hun geluid aan de grond.
De lijst met voorbeelden is overigens niet volledig.
- Wat opvalt is dat in deze studie turbopropmotoren op grondniveau minder herrie lijken te maken dan turbofanmotoren. Of dat echt in zijn algemeenheid zo is, of dat dat een toevalligheid is van de hier gekozen combinatie, kan ik niet beoordelen.